The Topology of the Analog of Kovalevskaya Integrability Case on the Lie Algebra so(4) under Zero Area Integral / V. A. Kibkalo. // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika. 2016. № 3. P. 46-50 [Moscow Univ. Math. Bulletin. Vol. 72, N 2, 2017. P. 119-123].

The topology of the space of closures of solutions to an integrable system on the Lie algebra so(4) being an analogue of the Kovalevskaya case has been studied. Fomenko–Zieschang invariants are calculated for this purpose in the case of zero area integral, which classify isoenergetic 3-surfaces and the corresponding Liouville foliations.

Key words: integrable Hamiltonian system, Fomenko–Zieschang invariants, isoenergetic surface.

№ 3/2016