Rings of particular rings with a big center / *D. V. Zlydnev.* // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika. 2014. № 2. P. 25-30
[Moscow Univ. Math. Bulletin. Vol. 72, N 2, 2017. P. 0].

А ring *R* is called IIC-ring if any nonzero ideal of $R$ has nonzero intersection with
the center of *R*. We consider certain results about rings of quotients of semiprime
IIC-rings and show by examples that these properties are not conserved in the case
of arbitrary IIC-rings. We prove more general properties of IIC-rings which concern
its rings of quotients.

*Key words*:
center of ring, IIC-ring, right-bounded ring, full ring of quotients, symmetric ring of quotients.